Что такое электретный микрофон

Электретные микрофоны

В последнее время в бытовых магнитофонах используются электретные конденсаторные микрофоны. Электретные микрофоны имеют самый широкий диапазон частот – 30…20000 Гц.

Микрофоны этого типа дают электрический сигнал в два раза больший нежели обычные угольные.

Промышленность выпускает электретные микрофоны МКЭ-82 и МКЭ-01 по размерам аналогичные угольным МК-59 и им подобным, которые можно устанавливать в обычные телефонные трубки вместо угольных без всякой переделки телефонного аппарата.

Этот тип микрофонов значительно дешевле обычных конденсаторных микрофонов, и поэтому более доступны радиолюбителям.

Отечественная промышленность выпускает широкий ассортимент электретных микрофонов, среди них МКЭ-2 односторонней направленности для катушечных магнитофонов 1 класса и для встраивания в радиоэлектронную аппаратуру — МКЭ-3, МКЭ-332 и МКЭ-333.

Для радиолюбителей наибольший интерес представляет конденсаторный электретный микрофон МКЭ-3, который имеет микроминиатюрное исполнение.

Микрофон применяется в качестве встраиваемого устройства в отечественные магнитофоны, магниторадиолы и магнитолы, такие как, «Сигма-ВЭФ-260», «Томь-303», «Романтик-306» и др.

Микрофон МКЭ-3 изготовляется в пластмассовом корпусе с фланцем для крепления на лицевой панели радиоустройства с внутренней стороны. Микрофон является ненаправленным и имеет диаграмму круга.

Микрофон не допускает ударов и сильной тряски. В табл. 2 приведены основные технические параметры некоторых марок миниатюрных конденсаторных электретных микрофонов.

Таблица 2.

Тип микрофонаМКЭ-3МКЭ-332МКЭ-333МКЭ-84
Номинальный диапазон рабочих частот, Гц50…1600050… 1500050… 15000300…3400
Чувствительность по свободному полю на частоте 1000 Гц, мкВ/Пане более 3не менее 3не менее 3А – 6…12 В – 10…20
Неравномерность частотной характеристики чувствительности в диапазоне 50… 16000 Гц, дБ, не менее10
Модуль полного электрического сопротивления на 1000 Гц, Ом, не более250600 ±120600 ± 120
Уровень эквивалентного звукового давления, обусловленного собственными шумами микрофона, дБ, не более25
Средний перепад уровней чувствительности «фронт — тыл», дБне, менее 12не более 3
Условия эксплуатации: температура, С относительная влажность воздуха, не более5…30 85% при 20’С-10…+50 95±3% при 25’С10…+5095±3%при 25’С0…+4593%при 25’С
Напряжения питания, В1,5…91,5…91,3…4,5
Масса, г8118
Габаритные размеры (диаметр х длина), мм14×2210,5 х 6,510,5 х 6,522,4×9,7

На рис. 5 приведена схема включения распространенного в радиолюбительских конструкциях электретного микрофона типа МКЭ-3.

Рис. 5. Принципиальная схема включения микрофона типа МКЭ-3 на входе транзисторного УЗЧ.

Рис. 6. Фото и внутренняя приниципиальная схема микрофона МКЭ-3, расположение цветных проводников.

Маркировка

Марка микрофона обычно наносится на его корпусе и состоит из букв и цифр. Буквы указывают тип микрофона:

  • МД – катушечный (или «динамический»),
  • МДМ – динамический малогабаритный,
  • ММ – миниатюрный электродинамический,
  • MЛ – ленточный,
  • МК – конденсаторный,
  • МКЭ – электретный,
  • МПЭ – пьезоэлектрический.

Цифры обозначают порядковый номер разработки. После цифр стоят буквы А, Т и Б, обозначающие, что микрофон изготовлен в экспортном исполнении — А, Т — тропическом, а Б – предназначен для бытовой радиоэлектронной аппаратуры (РЭА).

Маркировка микрофона ММ-5 отражает его конструктивные особенности и состоит из шести символов:

  • первый и второй …………… ММ — микрофон миниатюрный;
  • третий ………………………….. 5 — пятое конструктивное исполнение;
  • четвертый и пятый ……….. две цифры, обозначающие типоразмер;
  • шестой …………………………. буква, которая характеризует форму акустического входа (О — круглое отверстие, С — патрубок, Б — комбинированное).

В практике радиолюбителей используется несколько основных типов микрофонов: угольные, электродинамические, электромагнитные, конденсаторные, электретные и пьезоэлектрические.

Конструкция микрофона и динамика

Конструктивно динамики (динамические головки, громкоговорители) состоят из нескольких основных конструктивных элементов:

  1. Магнитов,
  2. Катушек, намотанных на каркас,
  3. Диффузоров.

Внутри каркаса с катушкой располагается постоянный магнит-сердечник, с помощью которого при подаче сигнала на вход образуется магнитное поле. При этом катушка начинает своё движение, характер которого зависит от поданных сигналов и их амплитуды (с её снижением уменьшается и ход самой катушки). Одновременно с катушкой двигается и диффузор, присоединённый к катушке, создавая при этом в воздухе звуковые колебания.

Микрофон по своей конструкции фактически повторяет динамик: его диффузор принимает воздушные колебания, а катушка напрямую связана с ним и магнитом внутри. Основным отличием стало то, что катушка динамической головки имеет меньше витков в сравнении с катушкой, которая устанавливается в микрофоне.

Устройство и принцип действия микрофона

Принцип работы любого микрофона вне зависимости от особенностей его конструктивного исполнения заключается в воздействии на тонкую мембрану звуковых колебаний воздуха. В результате мембранные колебания становятся причиной возбуждения электрических колебаний. В зависимости от типа устройства могут быть использованы различные технологии и физические явления: микрофон может быть

  • Электродинамическим

    • Ленточным, когда материалом для катушки служит гофрированная алюминиевая фольга;

Катушечным, оснащённым диафрагмой в кольцевом зазоре магнита, при колебаниях которой под действием звуковых волн катушка пересекается силовыми линиями и в ней наводится ЭДС;

Пьезоэлектрическим, работа которого основана на использовании кристаллических пластинок;

Конденсаторным, оснащённым конденсатором, ёмкость которого изменяется во время звуковых колебаний при вибрации одной из обкладок (для этого она изготавливается из эластичного материала).

Основными техническими параметрами всех микрофонов является их

Устройство и принцип действия динамика

Работа любой динамической головки основана на использовании в составе конструкции кольцевого магнита с полюсами, которые размещены на его плоской стороне, и его поля. Замкнутое магнитное поле при этом формируется за счёт использования стальных листов с обеих сторон элемента. Полученная система играет роль магнитопровода и по своей форме и размеру полностью совпадает с параметрами магнита.

Равномерность распределения магнитных линий обеспечивается за счёт вставленного в центральное отверстие стального цилиндра. Разница в диаметрах цилиндра и отверстия в магните определяется конструкцией катушки. В полученном зазоре происходит концентрация магнитного поля.

Катушка индуктивности, размещённая в зазоре, всегда погружается внутрь зазора на половину высоты, что позволяет обеспечить её одинаковый ход во время работы динамика в обе стороны. Подключение к катушке к источнику питания в зависимости от совпадения полярности катушки и самого магнита (при одной её совпадении она выталкивается, при противоположных значениях – втягивается) фактически обеспечивает работу всего устройства.

Для того чтобы добиться механического движения воздуха катушка фиксируется на жёстком цилиндре с бумажным конусом. При перемещении катушки конус также будет двигаться и появится звук. Исключить любые искажения помогает фиксация полученной конструкции при помощи диффузородержателя и центрирующей шайбы.

В данной категории можно также выделить определенные типы: вокальные, речевые и инструментальные. Выглядеть они могут по-разному. Речевые и вокальные между собой обычно похожи. Их можно монтировать на стойки в специальные держатели. Инструментальный тип внешне походит и на сценические, и на студийные. Их особенность – способность воспринимать нюансы и детали звука и высокая сопротивляемость сильному звуковому давлению. Для этого в них встроен аттенюатор, снижающий риск перегрузки устройства.

Что такое компьютерный микрофон – знают все. Это чаще всего недорогое устройство, которое используется для связи через различные программы. Их характеристики не впечатляют, но пользователям многого и не нужно. Выполняются они в виде гарнитур. Часто встраиваются в веб-камеры для удобства видеосвязи.

Разделение по принципу действия подразумевает две разновидности устройств: конденсаторные и динамические. Каждый из них имеет свои преимущества и недостатки, а также сферы применения.

Электретный микрофон + LM386. Замер АЧХ акционных наушников.

«Самые лучшие друзья — это наши враги. Потому что они не дают нам скучать.»

1. Микрофоны.
Электронные комплектующие с Aliexpress — та ещё рулетка.
Но я решил подёргать судьбу за хвост в очередной раз и заказал десяток электретных микрофонов (капсюлей).

Посылка приехала: маленький пакетик с пупыркой внутри, внутри десяток миков насыпью.
Ничего интересного.

Вот они:

Проверка по постоянному току.
Все мики были подключены к источнику 1,5В.
Ток миков составил 285+-25 мкА. Всё ОК.

Проверенные микросхемы LM386 уже в наличии.Ссылка на предыдущий обзор.

Для микросхем были разведены печатные платы (ПП) в программе Layout6.
Обычные односторонние ПП, выполненные по утюжной технологии.

Схема включения:

Платка в сборе:

Для проверки платки мик был заменён резистором 4,7 кОм.
Спектр
Всё ОК.
Проводок, который торчит из-под ПП — для соединения с экраном (не фото его нет).

После чего подсоединяем мики и смотрим спектры:
1.
2.
3.
4.
5.Чем меньше «расчёска» на спектре, тем лучше.
Терпения хватило на 5 штук, на этом остановился.

Замеры АЧХ микрофонов делать не стал, т.к. нет алюминиевых корпусов.Выводы: мики вполне работоспособны. Можно покупать.

2. Замер АЧХ наушников.
Наверно, многие помнят обзоры Huawei Honor Monster N-tune100 с JD, которые были по скидке.

Я тоже попался на эту удочку.
Сабж приехал:

Наушники были куплены в подарок. Очень хорошо, что человек, которому они предназначены, не требователен к качеству звука.
Иначе мне наставили бы звёзд, но не в карму, а на фейсе. Или вообще заставили бы пользоваться ими, пока не сотрутся.

Условия замера: замер с усреднением 1/6 октавы розовым шумом, усреднение 400.
Программа — SpectraLab.

В качестве отправной точки — замер АЧХ ноунейм наушников за 1 доллар, купленных на блошином рынке:


Тут всё понятно.

Теперь герои пиара:

Лично у меня к этим наушникам вопросов не имеется.

Всем удачи!

PSДля обзорщиков, которые захотят повторить эксперименты с замером АЧХ.
При «спаривании» наушника и микрофона будьте аккуратны: в отрезке трубки — замкнутый объём воздуха.
При установке микрофона и(или) наушника возможно повреждение мембраны!

PS2Информация в обзоре предоставляется как есть.
Обзор не представляет интересы какой-либо сертифицированной вдоль и поперек лаборатории с отчётами на фирменных бланках с кучей печатей.

Схема адаптера с дополнительным источником питания

Вторая схема содержит больше деталей и дополнительную батарею питания. Однако она обеспечивает лучший режим работы капсюля электретного микрофона, подходит для использования с любым микрофоном и позволяет подключать микрофон к устройствам, которые не подают питание на микрофонный вход, или это питание не подходит для электретных микрофонов (например микрофонные входы микшерных пультов).

В этой схеме капсюль микрофона питается от отдельного источника питания. Я использовал обычный Li-Ion аккумулятор емкостью около 450 mAh и небольшую плату контроллера заряда, которую я заказал на Алиэкспресс.

Можно использовать другой подходящий источник питания, например литиевую «таблетку» типа 2032 или например два элемента типа AAA. Я использовал старый Li-Io аккумулятор, который плохо держит ток нагрузки, но в этой схеме проработает еще долго. Капсюль потребляет всего около 200 мкА. Если микрофон не подключен в гнездо X1, то устройство вообще не потребляет ток от источника питания. Поэтому выключатель питания SA1 можно исключить из схемы.

Конденсатор С2 емкостью 100 пикофарад служит для отсечки возможных высокочастотных помех. Этот конденсатор тоже можно исключить из схемы. Все конденсаторы — малогабаритные керамические.

Печатная плата адаптера

Печатную плату я сделал методом гравировки на станке с ЧПУ CNC3018 Pro

Для регулировки уровня сигнала микрофона я использовал обычный подстроечный резистор. Регулировка производится отверткой через отверстие в корпусе адаптера. При желании вы можете использовать потенциометр с ручкой, но поскольку регулировать уровень приходится не часто, я решил установить подстроечник.

Корпус устройства я напечатал на 3D принтере из ABS пластика.

Светодиод на корпусе адаптера показывает режим заряда аккумулятора. Я выпаял SMD светодиод на китайской плате контроллера заряда, припаял вместо него 2 провода и соединил их с 3мм светодиодом на боковой стеке адаптера.

Изготовления платы ЛУТом.

Говоря, что лучше всего платы получаются при печати на страницах плейбоя. Раньше я так и делал, но в последнее время перешел на глянцевую с одной стороны бумагу. Жалко переводить интересные статьи на непонятно что….

В целом технология ЛУТ итак всем известна, и в ролике она показана, поэтому остановлюсь только на двух моментах.

  • Прожарку утюгом я делаю в течении минуты, а после закидываю плату в ближайшую книжку и встаю на книжку всем весом на 1-2 минуты.
  • Широкие места и дефекты переноса или печати я всегда промазывал перманентным маркером. В этот раз вместо перманентного маркера я воспользовался акриловым. При этом я ждал высыхания минут 10-15. Тем не менее он отлично справился и под ним ничего не травилось.

Приступаем к изготовлению микрофона.

Отрезаем часть корпуса шприца, со стороны крепления иглы, где-то возле отметки 1 грамм при помощи ножа со сменными лезвиями.

Удаляем маркировку с поверхности корпуса шприца ацетоном.

Обрабатываем обрезанный край мелкой шкуркой.

Корпус для микрофона можно сделать ещё короче, но тогда его будет неудобно держать в руке, если понадобится, да и ветрозащитный колпачок будет хуже держаться. Кроме того, дополнительное пространство в корпусе микрофона позволит устроить простое, но эффективное крепление шнура в виде узелка.

Просовываем в отверстие для иглы экранированный кабель и завязываем узлом.

Припаиваем микрофонный капсюль так, чтобы оплётка экранированного провода соединялась с корпусом.

Вставляем микрофонный капсюль в корпус и защёлкиваем то место на корпусе, что когда-то служило для крепления иголки, в лапке канцелярского зажима.

1 – «Горячий» провод.

2 – Оплётка кабеля.

С другой стороны кабеля припаиваем штекер. Цоколёвка (распиновка), как на картинке. Не трудно заметить, что левый и правый канал соединены вместе. Более подробно о том, как припаять штекер, можно почитать здесь.

Ну, и наконец, изготавливаем из поролона ветрозащитный колпачок (насадку).

Отрезаем подходящий брусок поролона острым ножом.

Какой-нибудь остро заточенной трубкой вырезаем цилиндрическое углубление.

Я для подобных работ использую секции от поломанных телескопических антенн. Эти секции представляют собой тонкостенные латунные трубки, которые легко заточить острым скальпелем, вращая острие последнего по внутренней поверхности трубки.

Отсекаем всё лишнее, чтобы получить нечто похожее на сферу.

Вот, что получилось.

А вот так этим можно пользоваться.

Что это такое?

Электретные микрофоны считаются одним из подвидов конденсаторных устройств. Визуально они напоминают небольшой конденсатор и отвечают всем современным требованиям к мембранным устройствам. Обычно изготавливаются из поляризованной пленки с нанесенным на нее тончайшим слоем металла. Такое покрытие представляет собой одну из граней конденсатора, вторая при этом выглядит как твердая плотная пластина: звуковое давление действует на колышущуюся диафрагму и тем самым вызывает изменение характеристик емкости самого конденсатора.

Как и любое другое устройство, электретный микрофон имеет свои достоинства и недостатки.

К преимуществам такой техники относят ряд факторов:

  • имеют низкую себестоимость, благодаря чему такие микрофоны и считаются одними из наиболее бюджетных на современном рынке;
  • могут применяться в качестве устройств для проведения конференций, а также устанавливаться в бытовых микрофонах, персональных компьютерах, видеокамерах, а также в домофонах, приспособлениях для прослушивания и мобильных телефонах;
  • более современные модели нашли свое применение в производстве измерителей качества звучания, а также в оборудовании для вокала;
  • потребителям доступны как изделия с разъемами типа XLR, так и устройства с разъемом 3,5 мм, а также проводными клеммами.

Как и многие другие установки конденсаторного типа, электретная техника характеризуется повышенной чувствительностью и продолжительной стабильностью. Такие изделия отличаются высокой стойкостью к повреждениям, ударам и воздействию воды.

Впрочем, не обошлось и без недочетов. Минусами моделей стали некоторые их особенности:

  • они не могут использоваться для каких-то больших серьёзных проектов, так как подавляющее большинство звукорежиссеров считает такие микрофоны худшим из предлагаемых вариантов;
  • так же, как и типовым конденсаторным микрофонам, электретным установкам необходим дополнительный источник подпитки – хотя в данном случае будет вполне достаточно только 1 В.

За счет компактных размеров и высокой гидростойкости их можно установить почти везде. В комбинации с миниатюрными камерами они оптимально подходят для того, чтобы вести наблюдение за проблемными и труднодоступными местами.

Классификация микрофонов[править]

Динамический микрофонправить

Динамический микрофон – наиболее распространённый тип конструкции микрофона. Он представляет собой мембрану, соединённую с лёгким токопроводом, который помещен в сильное магнитное поле, создаваемое постоянным магнитом. Колебания давления воздуха (звук) воздействуют на мембрану и приводят в движение токопровод. Когда токопровод пересекает силовые линии магнитного поля, в нём наводится ЭДС индукции. ЭДС индукции пропорциональна как амплитуде колебаний мембраны, так и частоте колебаний.

Катушечный микрофонправить

В электродинамическом микрофоне катушечного типа диафрагма соединена с катушкой, находящейся в кольцевом зазоре магнитной системы. При колебаниях диафрагмы под действием звуковой волны витки катушки пересекают магнитные силовые линии, и в катушке наводится переменная ЭДС. Такой микрофон надёжен в эксплуатации.

Ленточный микрофонправить

В электродинамическом микрофоне ленточного типа вместо катушки в магнитном поле располагается гофрированная ленточка из алюминиевой фольги. Такой микрофон применяется главным образом в студиях звукозаписи.

Конденсаторный микрофонправить

Конденсаторный микрофон основан на конденсаторе, одна из обкладок которого выполнена из эластичного материала (обычно — полимерная плёнка с нанесённой металлизацией); при звуковых колебаниях вибрации эластичной обкладки изменяют ёмкость конденсатора. Если конденсатор заряжен, то изменение ёмкости конденсатора приводит к возникновению токов заряда, которые и являются полезным сигналом, поступающим с микрофона на усилитель. Для работы такого микрофона между обкладками должно быть приложено поляризующее напряжение, 60-80 вольт в более старых микрофонах, а в моделях после 1960—1970-х годов — 48 вольт. Такое напряжение питания считается стандартом, именно с таким фантомным питанием выпускаются предусилители и звуковые карты. Конденсаторный микрофон имеет очень высокое выходное сопротивление. В связи с этим, в непосредственной близости к микрофону (внутри его корпуса) располагают предусилитель с высоким (порядка 1 ГОм) входным сопротивлением, выполненный на электронной лампе или полевом транзисторе.

Конденсаторные микрофоны обладают весьма равномерной амплитудно-частотной характеристикой и обеспечивают высококачественный захват звука, в связи с чем широко используются в студиях звукозаписи, на радио и телевидении. Недостатками их являются высокая стоимость, необходимость во внешнем питании и высокая чувствительность к ударам и климатическим воздействиям — влажности воздуха и перепадам температуры, что не позволяет использовать их в полевых условиях.

Электретный микрофонправить

По принципу действия электретный микрофон схож с микрофоном конденсаторного типа, однако в качестве неподвижной обкладки конденсатора и источника постоянного напряжения используется пластина из электрета. Электретные материалы являются диэлектриками и способны длительное время сохранять поляризованное состояние, создавая в окружающем пространстве квазипостоянное электрическое поле.

Угольный микрофонправить

Угольный микрофон – один из первых типов микрофонов. Содержит угольный порошок, размещённый между двумя металлическими пластинами и заключённый в герметичную капсулу. Стенки капсулы или одна из металлических пластин соединяется с мембраной. При изменении давления на угольный порошок изменяется площадь контакта между отдельными зёрнышками угля, в результате чего изменяется сопротивление между металлическими пластинами. Если пропускать между пластинами постоянный ток, напряжение между пластинами будет зависеть от давления на мембрану.

Пьезомикрофонправить

В основе пьезомикрофона используется пьезоэлектрический эффект. При деформации некоторых кристаллов (например, кристаллов сегнетовой соли) на их поверхности возникают электрические заряды, величина которых пропорциональна деформирующей силе. Пластинки из искусственно выращенных кристаллов служат основным рабочим элементом пьезомикрофонов.

По своим электроакустическим и эксплуатационным свойствам пьезомикрофоны не могут обеспечить требований, предъявляемых к профессиональным студийным и трансляционным микрофонам. К недостаткам пьезомикрофонов следует отнести высокое внутреннее сопротивление, имеющее емкостный характер, значительную неравномерность частотной характеристики, недостаточную эксплуатационную надежность (хрупкость, гигроскопичность) и зависимость параметров от температуры. Достоинствами пьезомикрофонов являются простота устройства, малый вес и габариты, а также небольшая стоимость.

О характерных заблуждениях

1. Маленький микрофон – плохой микрофон.
Неверно в корне. Есть плохие большие и очень хорошие маленькие. Маленькие микрофоны вообще
наиболее правильно передают звуковую картину, недаром измерительные микрофоны все как один
тонюсенькие. Однако делать суперкачественные
микрофоны в небольшом объёме не оправдано там, где в этом нет необходимости. Действительно,
студийные микрофоны, в основной массе имеют диаметр мембран около дюйма. Но это не относится,
например, к записи перкусий, где предпочтительнее
небольшие диаметры, передающие острую атаку более точно. И это не значит, что грамотный
звукорежиссёр не сможет записать вокалиста в пол-дюймовый микрофон так, что Вы не отличите
от дюймового. Всё дело в качестве микрофона и в опыте,
а не в размере.

2. Все минимикрофоны – конденсаторные.
Совершенно не обязательно. Компактности, так же как и качеству микрофонов разных конструкций
нет предела. Технологии шагают, и там, где применение динамического микрофона предпочтительнее,
а размеры ограничены, сегодня применяют
динамические микрофоны. Например, подзвучка саксофонов и других духовых инструментов в живых
выступлениях, там, где нужен упругий звук, который конденсаторные микрофоны дать не могут.

3. Конденсаторные микрофоны – более шумные.
Скорее, наоборот. Хотя сравнивать эти вещи практически невозможно. Шум, который Вы услышите,
воткнув в тракт динамический микрофон – это шум входной ячейки пульта (если у Вас в тракте
всё в порядке, ничего не фонит, и не шумят
соседи).
Конденсаторные же микрофоны, за счёт большей чувствительности, менее критичны к качеству
входных ячеек пультов. И, в силу своих пространственных характеристик, передают все акустические
шумы в помещении, и разговор соседей в том
числе, даже если они говорят негромко. Поэтому конденсаторные микрофоны требуют большей
заглушённости помещения, чем динамические микрофоны.

4. Динамические микрофоны для сцены, конденсаторные микрофоны для студии.
В основном – да, но это не правило. Есть определённое количество вокалистов настолько привыкших
петь в динамические микрофоны на сцене, что и в студии у них это получается значительно лучше,
чем пение в конденсаторный микрофон.
Поставив конденсаторный микрофон на запись «бочки», скорее всего Вы отправите его в
последний путь.
Кроме того, производители постоянно экспериментируют, предлагая всё больше неплохих вариантов
конденсаторных микрофонов для работы вокалистов на сцене.

5. Чувствительность конденсаторных микрофонов выше чувствительности динамических микрофонов,
значит конденсаторные микрофоны лучше.

Думаю, ход мысли тут уже ясен. :о)

Думайте головой, слушайте ушами!

Александр Филин
Адада
Санкт-Петербург: (812), 2006
При полном или частичном использовании
материалов ссылка на «Adada.Ru» обязательна!

Простая схема регулировки без дополнительного источника питания

Первая схема крайне проста и содержит всего несколько дополнительных компонентов.

Принципиальная схема первого адаптера

Для работы электретному микрофону требуется внешний источник питания. Устройства, рассчитанные на подключение таких микрофонов (звуковые карты компьютеров, диктофоны, видеокамеры) подают на микрофон такое питание через 3.5 мм разъем, к которому подключается микрофон. Микрофон передает звуковой сигнал и получает питание по одному и тому же проводу. Обычно это небольшое постоянное напряжение не более 2 вольт.

Наша задача состоит в том, чтобы уменьшить уровень переменного напряжения звукового сигнала и при этом не сильно уменьшить напряжение питания микрофона.

В нашей схеме напряжение питания на капсюль подается через резистор R1 сопротивлением 3к. Электретный капсюль потребляет очень небольшой ток, порядка 200 мкА. Поэтому падение напряжения на резисторе R1 будет незначительным и он не сильно повлияет на режим работы капсюля.

Уровень звукового сигнала на выходе X2 зависит от сопротивления подстроечного резистора R2, так как часть переменного напряжения замыкается на общий провод через этот резистор и электролитический конденсатор С1. Поскольку этот конденсатор не пропускает постоянный ток, то сопротивление R2 никак не влияет на напряжение питания микрофона. Чем выше (по схеме) движок подстроечного резистора, тем меньше звуковой сигнал на выходе. То есть цепь R1 — C1 — R2 представляет собой делитель переменного напряжения. Подстроечный резистор можно заменить на постоянный, подобрав его сопротивление по требуемому напряжению на выходе. В качестве C1 хорошо использовать миниатюрный SMD чип-конденсатор. теоретически, чем больше емкость этого конденсатора тем лучше. Можно использовать конденсаторы с емкостью от 10 мкФ.

Подключение динамического микрофона в микрофонный вход звуковой карты компьютера

Микрофонный вход звуковой карты предназначен для подключения электретного микрофона. Назначение контактов разъёма микрофонного входа показано на Рис. 1. Звуковой сигнал поступает на вход звуковой карты через контакт TIP. Питание электретного микрофона подаётся через резистор R на контакт RING. Контакты TIP и RING соединяются вместе в микрофонном кабеле.

Рис. 1

Практически все мультимедийные микрофоны стоимостью 2-4$ годятся только для распознавания речи, телефонии и т. п. Хотя данные микрофоны, как правило обладают высокой чувствительностью, они имеют высокий уровень нелинейных искажений, недостаточную перегрузочную способность, а так же — круговую диаграмму направленности (то есть одинаково хорошо воспринимают сигналы с любой стороны). Поэтому для записи вокала в домашних условиях необходимо использовать остронаправленный динамический микрофон, позволяющий свести к минимуму посторонние шумы от вентилятора системного блока и других источников.

Динамический микрофон можно подключить непосредственно на микрофонный вход звуковой карты. Сигнальный провод микрофонного кабеля нужно припаять к контакту TIP, экран — к контакту GND, контакт RING нужно оставить свободным. Если у микрофона два сигнальных контакта — HOT и COLD, то контакт HOT подать на контакт TIP, а контакт COLD соединить с GND. Поскольку чувствительность динамического микрофона низкая, по сравнению с электретным, достаточный уровень записи получается только при расположении микрофона на расстоянии 3-5 сантиметров от губ исполнителя. Это не всегда допустимо, поскольку микрофоны некоторых типов будут «заплёвываться», несмотря на встроенную ветрозащиту. Такие микрофоны необходимо располагать дальше от исполнителя, а для получения достаточного уровня записи — воспользоваться предусилителем. Схема простейшего предусилителя с питанием от разъёма микрофонного входа показана на Рис. 2.

Рис. 2

Данная схема у меня прилично работает при следующих номиналах: R1,R3 — 100 кОм, R2 — 470 кОм, C1,C2 — 47мкФ, VT1 — кт3102ам (можно заменить на кт368, кт312, кт315).

В основу схемы положен классический транзисторный каскад с общим эмиттером. Нагрузкой каскада служит резистор R звуковой карты (Рис. 1). Коэффициент усиления зависит от параметров транзистора VT1, величины резистора обратной связи R2 и величины резистора R звуковой карты. Конденсатор C1 необходим для развязки по постоянному току. Резистор R1 служит для устранения щелчков при подключении микрофона «на ходу», при желании можно его исключить.

При более детальном рассмотрении оказалось, что на контакте TIP микрофонного входа моего SB LIVE 5.1 присутствует постоянное напряжение около 2 В. Исследовать причину, и характерно ли это только для моего экземпляра звуковой карты или для всех, возможности не было. Но абсолютно точно, что работоспособность схемы практически не изменяется при исключении элементов C2, R3.

Достоинством данной схемы является простота. К недостаткам следует отнести большие нелинейные искажения — около 1%(1 кГц) при 1 мВ на входе. Уменьшить нелинейные искажения до 0,1% можно с помощью дополнительного резистора 100 Ом, включаемого между эмиттером транзистора VT1 и шиной GND, при этом коэффициент усиления уменьшается с 40 дБ до 30 дБ. Изменения показаны на Рис. 3.

Рис. 3

Более высокие параметры можно получить, используя внешний микрофонный усилитель с автономным питанием, подключаемый к линейному входу звуковой карты. Например — схема с симметричным входом.

Электретный микрофон

Электретные микрофоны были самыми первыми ( 1928 г.) и до настоящего времени остаются наиболее важными электретными приборами. Однако если в первых приборах применялись термоэлектреты из воска, то в настоящее время в микрофонах используются электроэлектреты из полимерных пленок. Электретные микрофоны имеют равномерную характеристику в звуковом диапазоне и чувствительность до 0 1 мВ / мкбар

Различные по конструкциям Электретные пленочные микрофоны могут перекрывать частотный диапазон 10 – 3 – 108 Гц, что весьма важно для электронного приборостроения.

Электретные микрофоны, являющиеся одним из наиболее чувствительных преобразователей звуковых колебаний в электрический сигнал, из-за высокого выходного сопротивления требуют в своем составе согласующий элемент, снижающий выходное сопротивление и повышающий мощность выходного сигнала до уровня, обеспечивающего нормальную работу последующего усилителя низкой частоты.

Электретные микрофоны имеют ограниченный, хотя и весьма продолжительный срок службы.

Электретные микрофоны, по существу, те же конденсаторные, но постоянное напряжение для них обеспечивается не обычным источником, а электрическим зарядом мембраны или неподвижного электрода, материалы которых отличаются тем, что способны сохранять этот заряд длительное время.

Электретные микрофоны имеют, как правило, большую чувствительность, чем динамические, и обладают такой же частотной характеристикой при меньших размерах и массе. Полагают, что чувствительность электретных микрофонов может сохраняться практически постоянной до 10 – 100 лет.

Электретные микрофоны, по существу, те же конденсаторные, на постоянное напряжение для них обеспечивается не обычным источником, а электрическим зарядом мембраны или неподвижного электрода, материалы которых отличаются тем, что способны сохранять этот заряд длительное время.

Электретные микрофоны выпускают пока только для бытовых магнитофонов. Из-за высокого уровня шумов они непригодны для вещательных систем.

Преимущества электретных микрофонов заключаются в их высокой емкости, отсутствии внешних источников питания, а также весьма высоком выходном сопротивлении, типичном для конденсаторных микрофонов вообще. Вследствие высокой емкости электретные микрофоны удобны при акустических измерениях и в качестве нуль-индикаторов в мостовых схемах на звуковых частотах и в компенсационных цепях.

Схема электретных микрофонов с металлической мембраной ( а и полимерной электретной мембраной ( б.

Преимущества электретных микрофонов заключаются в их высокой емкости, отсутствии внешних источников питания. Вследствие высокой емкости электретные микрофоны удобны при акустических измерениях и в качестве нуль-индикаторов в мостовых схемах на звуковых частотах и в компенсационных цепях.

Схематичное изображение части.

Характеристики электретных микрофонов приведены в табл. 24.3. Капсюль электретг ного конденсаторного микрофона, работающий обычно как эквивалентный генератор ( преобразующий акустический сигнал в электрический), является в то же время обратимым преобразователем. В настоящее время электретные излучатели все более широко используются в звуковой акустике; успешно, как и электретные микрофоны, конкурируя с аналогами других типов.

Схематичное изображение части.

Схематично фрагмент конструкции электретного микрофона показан на рис. 24.14. Предполагается, что заряды сосредоточены в тонких поверхностных слоях электретной пленки, причем их поверхностные плотности TI – тг, которые индуцируют на электродах заряды с поверхностными плотностями он к 0 / 2 соответственно.

Зависимость стандартного уровня чувствительности от чувствительности. Параметр семейства кривых. Вн – сопротивление нагрузки.

Что внутри

Фото 2. МКЭ-3 в разборке

Резистор 7.5 КΩ. Фигня с позолоченными контактами и маркировкой АА0 (волшебным образом расшифровывается как К513УЕ1А) в современном мире называется JFET (junction gate field-effect transistor) полевым транзистором, а в советские времена это называли «микросхема» (потому, что там внутри ещё есть диод от истока к затвору и резистор) и другое ещё название — «истоковый усилитель-повторитель».

Питание у этого микрофона кошмарное:

Фото 3. Устройство МКЭ-3

К чему это можно подключить сейчас — неведомо. Но большая мембрана как бы намекает, что у этого микрофона есть потенциал… в плане повышенной чувствительности.

Поделитесь в социальных сетях:FacebookX
Напишите комментарий